Codegree Thresholds for Covering 3-Uniform Hypergraphs

نویسندگان

  • Victor Falgas-Ravry
  • Yi Zhao
چکیده

Given two 3-uniform hypergraphs F and G = (V,E), we say that G has an F -covering if we can cover V with copies of F . The minimum codegree of G is the largest integer d such that every pair of vertices from V is contained in at least d triples from E. Define c2(n, F ) to be the largest minimum codegree among all n-vertex 3-graphs G that contain no F -covering. Determining c2(n, F ) is a natural problem intermediate (but distinct) from the well-studied Turán problems and tiling problems. In this paper, we determine c2(n,K4) (for n > 98) and the associated extremal configurations (for n > 998), where K4 denotes the complete 3-graph on 4 vertices. We also obtain bounds on c2(n, F ) which are apart by at most 2 in the cases where F is K− 4 (K4 with one edge removed), K − 5 , and the tight cycle C5 on 5 vertices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matchings and Tilings in Hypergraphs

We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...

متن کامل

Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs

This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....

متن کامل

Exact Minimum Codegree Threshold for K - 4-Factors

Given hypergraphs F and H, an F -factor in H is a set of vertex-disjoint copies of F which cover all the vertices in H. Let K− 4 denote the 3-uniform hypergraph with 4 vertices and 3 edges. We show that for sufficiently large n ∈ 4N, every 3-uniform hypergraph H on n vertices with minimum codegree at least n/2 − 1 contains a K− 4 -factor. Our bound on the minimum codegree here is best-possible....

متن کامل

The Complexity of the Hamilton Cycle Problem in Hypergraphs of High Minimum Codegree

We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform hypergraphs H of high minimum codegree δ(H). We show that for tight Hamilton cycles this problem is NP-hard even when restricted to k-uniform hypergraphsH with δ(H) ≥ n2−C, where n is the order of H and C is a constant which depends only on k. This answers a question raised by Karpiński, Ruciński and ...

متن کامل

Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs

Given positive integers a ≤ b ≤ c, let Ka,b,c be the complete 3-partite 3-uniform hypergraph with three parts of sizes a, b, c. Let H be a 3-uniform hypergraph on n vertices where n is divisible by a + b + c. We asymptotically determine the minimum vertex degree of H that guarantees a perfect Ka,b,ctiling, that is, a spanning subgraph of H consisting of vertex-disjoint copies of Ka,b,c. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2016